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Abstract

Fluctuation electron microscopy (FEM) is explicitly sensitive to 3- and 4-
body atomic correlation functions in amorphous materials; this is sufficient
to establish the existence of structural order on the nanoscale, even when
the radial distribution function extracted from diffraction data appears entirely
amorphous. However, it remains a formidable challenge to invert the FEM data
into a quantitative model of the structure. Here, we quantify the FEM method
for a-Si by forward simulating the FEM data from a family of high quality
atomistic models. Using a modified WWW method, we construct computational
models that contain 10—40 vol% of topologically crystalline grains, 1-3 nm in
diameter, in an amorphous matrix and calculate the FEM signal, which consists
of the statistical variance V (k) of the dark-field image as a function of scattering
vector k. We show that V (k) is a complex function of the size and volume
fraction of the ordered regions present in the amorphous matrix. However, the
ratio of the variance peaks as a function of k affords the size of the ordered
regions; and the magnitude of the variance affords a semi-quantitative measure
of the volume fraction. We have also compared models that contain various
amounts of strain in the ordered regions. This analysis shows that the amount
of strain in realistic models is sufficient to mute variance peaks at high k. We
conclude with a comparison between the model results and experimental data.
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1. Introduction

Zachariasen proposed the continuous random network model in 1932 for the structure of
amorphous solids; it was subsequently demonstrated to match experimental diffraction data
and accepted as good description of the structure [1-3]. However, the lack of techniques
available to quantify order on the 1-3 nm length scale has left open the question of whether
medium-range order (MRO) also exists in amorphous solids. Elliot defines MRO in covalent
amorphous solids (like those considered in this work) as the type of connection (corner-,
edge-, or face-sharing) between the coordination polyhedra [4]. The connection between
neighboring tetrahedral groups is specified by the dihedral angle, i.e. the relative rotation around
a common bond between neighboring tetrahedra. The dihedral angle is random in a CRN,
but is precisely 60° in a perfect crystal [4]. Diffraction measurements yield only the two-
body correlation function g(r), yielding no evidence of MRO (figure 1) even from atomistic
models that are heavily seeded with nanocrystallites (described below). Fluctuation electron
microscopy (FEM) [5], however, has been shown analytically to be sensitive to three- and four-
body atomic correlations [5—7]. When two pairs of atoms belong to neighboring tetrahedra,
then the corresponding four-body function largely reflects the dihedral angle, i.e. whether the
structure is locally a CRN or crystalline.

These fluctuations are measured in TEM dark-field images by computing the normalized
variance of the diffracted intensity:

2
vk oLk o) (1
(I(r.k, Q))

where r is the position on two-dimensional image, K is the scattering vector and Q is the radius
of the aperture in diffraction space, giving a spatial resolution of 0.61/Q. As discussed below,
given a model of the atomic coordinates, the variance can be calculated either via a direct
summation, which is computationally reasonable only for models of ~60 atoms or less or, as
discussed below, by simulating the scattered intensities in the image plane and analyzing these
data in the same manner as the experimental data.

FEM has been used to study the existence of MRO in amorphous silicon (a-Si) [8, 9],
hydrogenated amorphous silicon (a-Si:H) [10], amorphous germanium (a-Ge) [11], a-Si made
by ion implantation, phase-change chalcogenides [12] and amorphous metals [13, 14]. The
striking result of FEM studies is that all experimental samples of a-Ge, a-Si, and a-Si:H exhibit
peaks in the V (k) function that are inconsistent with the predictions of a CRN model, which
exhibits peaks that are only marginally above the background noise.

The ongoing issue is, what structure (or range of structures) is consistent with the
electronic and optical properties of these materials AND also predicts the V (k) features? It
remains a formidable challenge in diffraction theory to directly invert the FEM data into a
detailed atomistic model of the structure. A powerful new method, experimentally constrained
molecular relaxation, has been developed to generate structures a priori that are consistent with
multiple data sets, which may include V (k) [15]. As reported in this workshop [16], the initial
results are very promising, but the method has not yet been extensively exploited for a-Si and
related materials.

The radial distribution function extracted from diffraction measurements reveals that
tetrahedral short-range order is strongly preserved in covalent amorphous materials. One
hypothesis is that regions of MRO consist of topologically crystalline (diamond cubic)
grains embedded in a CRN matrix. This is plausible considering that it is experimentally
straightforward to prepare fine-grained nanocrystalline silicon (having grain sizes of >5 nm)
as well as mixed-phase samples. Previous authors have called such models ‘paracrystalline Si’
and showed that they produce simulated V (k) peaks at the same positions as those observed
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Figure 1. Average scattered intensities for various models, arbitrary offset in magnitude.
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Figure 2. Two modes: (a) variable resolution FEM via nanodiffraction and (b) variable coherence
FEM via HCDF.

experimentally [17, 18]. In this work, we obtain quantitative interpretations using a forward
modeling approach. We generate a family of paracrystalline silicon models that contain varying
amounts of order, simulate the FEM data from these models, extract trends as a function
of the size and volume fraction of the ordered regions, and compare these simulations with
experimental data.

2. Implementation on the TEM

Experimentally, FEM data can be collected using two different methods: hollow cone dark
field (HCDF) TEM and nanodiffraction in the STEM (figure 2). In HCDF, the FEM signal is
generated by taking a series of dark-field TEM images at several different areas of a sample,
calculating the variance in each image, and averaging the resulting variances. In STEM-FEM,
nanodiffraction patterns are collected across a region of the sample. The intensity in the patterns
is rotationally averaged and the variance from image to image is calculated. These two methods
collect the same data set, by the principle of optical reciprocity. The HCDF mode is accessible
on traditional TEMs, but it does not easily permit changes in resolution. Gibson et al have
shown that the characteristic length of the MRO, defined as the point at which the correlation
between atom pairs typically decays, can be extracted from V (Q) at constant k [7]. In STEM,
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variable resolution is more easily performed: multiple probe size can be obtained from the same
aperture simply by adjusting the excitation of a condenser lens between the physical aperture
and the objective lens [19, 20].

In addition, STEM allows for easy identification of regions with unusually large (=4 nm)
nanocrystalline features that will dominate the variance signature [21]. The major influence of
a nanoparticle can be understood as follows: the scattered intensity / from an isolated crystal
increases as N2, where N is the number of atoms, and therefore as the radius R; although
this intensity is folded into the overall variance (equation (1)), the R® dependence gives a huge
weighting factor to larger crystallites. These regions can, if desired, be filtered out in STEM
by identifying the corresponding nanodiffraction patterns and removing them from the data set,
allowing for computation of the variance in the majority of the film. Note that FEM theories
developed thus far assume fully coherent imaging conditions, which maximizes the variance.
Measurements carried out in a STEM approach this condition, and thus the magnitude of the
variance found experimentally can be compared with that predicted in the present simulations.
By contrast, the coherence in a conventional TEM is smaller, and thus the experimental data
will exhibit smaller absolute magnitude, by a factor that ranges from 2 to 10 depending on the
instrument, as discussed elsewhere in this volume [22].

3. Model development

A realistic structural model of a-Si must reproduce, via accurate simulations, the electronic,
vibrational and optical properties that are measured experimentally. As noted by Drabold [23],
no computational algorithm exists that can reproduce the actual pathway by which a real
material is synthesized, as all algorithms that involve physical atom trajectories involve
unphysical timescales. For example, molecular dynamics ‘quench from the melt’ techniques
can only be performed for extremely short equivalent times (<1 ns), which implies extreme
cooling rates. The resulting models contain a significant fraction of 3- and 5-fold coordinated
Si atoms that create a huge density of states within the mobility gap, i.e. the electronic properties
are unrealistic [24]. To generate a high quality model, the algorithm must intrinsically
incorporate the physical features that are known to exist. The Wooten, Weiner, and Weaire
(WWW) method [25] assumes that four-fold (tetrahedral) coordination is the key feature, and
maintains it as follows. Atoms are placed randomly inside a computational box, assigned
four neighbors, and then allowed to relax through bond-switching events (bonds A-B and
C-D become bonds A—C and B-D) when such switches reduce the total energy. Local
structural rearrangements follow bond-switching transpositions. This process is continued
until the system reaches a local deep minimum, i.e. the lowest energy state while remaining
amorphous. CRN structures synthesized using WWW are highly realistic in terms of bond
angle and bond length distributions, total energy, electronic and vibrational properties [26].
Molecular dynamics simulations suggest that the structural relaxation of a-Si in fact occurs via
bond-switching events, which may explain the success of the WWW approach [26].
Nakhmanson et al extended the WWW approach to the synthesis of paracrystalline silicon
and showed that the resulting model predicts the measured electronic and vibrational properties
of a-Si [24] and yields peaks in the variance function V (k) at the k vectors that are observed
experimentally [24]. However, only a few models were synthesized, such that detailed trends
could not be extracted. We employ the same algorithm to create a family of models that spans
a broad range of paracrystallite grain sizes and volume fractions (figure 3). First, one to four
spherical grains of crystalline silicon are positioned inside of an empty computational cell that
will ultimately contain 1000 atoms. The number and size of grains specifies, by construction,
the volume fraction of the atoms that have a locally crystalline environment. The grains are
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Figure 3. A paracrystalline cell with 1 paracrystal of 123 atoms, surrounded by a CRN matrix.

each rotated to a random orientation and the remaining volume is randomly filled with atoms.
All of the atoms in the cell are assigned bonds with 4 neighbors. Next, the system is allowed to
relax via bond-switching except for atoms that are completely within the grains, the so-called
paracrystallites, whose coordinates are fixed. After the energy of the system is significantly
minimized, the atoms in the grains are allowed to move to obtain a final energy minimization.
To test whether the resulting models are physically reasonable, Drabold et al input the atomic
coordinates from selected WWW paracrystalline models into a first-principles code and then
allowed the system to relax. Negligible changes occurred in the coordinates, confirming the
quality of the WWW synthesis method [27].

It is known experimentally that peaks in both the scattered intensity and in the FEM
variance for a-Si occur at k vectors similar to those for Bragg diffraction in crystalline silicon
from the (111), (220), and (311) planes. These peak positions (referred to throughout as
the 1st, 2nd, and 3rd peaks, respectively) and peak widths are reproduced by the WWW
paracrystalline models. Because the peak widths are nearly constant, the interpretation of
FEM spectra involves only the heights of the characteristic peaks. For a CRN model with
no paracrystallites, the intensity shows similar peaks, as expected due to the tetrahedral short-
range order (figure 1), but the FEM variance has a low magnitude (figure 4). For models that
have large paracrystalline content, the variance peaks due to the CRN are negligible; however,
the non-zero CRN background sets a modest lower limit on the ability of FEM to detect dilute
paracrystalline content.

To study the effect of paracrystalline size and volume fraction on the FEM variance, we
constructed thirteen computational cells of 1000 atoms each, 2.7 nm on a side, using the WWW
method (table 1). For each cell, the designation code (number g) gives the number of atoms
in each paracrystalline grain; cells containing two or four grains have two or four codes. The
grain sizes range from 1.10 to 2.54 nm in diameter and the ordered volume fractions range from
12 to 40%. All of these cells have roughly Gaussian distributions of bond angles, 109° &+ 10°,
and of bond lengths, 2.35 £ 0.1 A, values which are characteristic of the best a-Si models. In
order to reproduce the film thickness used in experiment (~20 nm), seven cells are stacked in
the z-direction (parallel to the electron beam in the TEM) to give a total simulated thickness
of ~19 nm. Voyles has shown [6] that variance data must be corrected for film thickness;
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Figure 4. Variance calculated for a continuous random network (open squares) and various
Si models with low paracrystalline fraction.

Table 1. Nomenclature of paracrystalline silicon cells. Each cell contains 1000 atoms. The models
are named by the number of atoms per grain, for each of the grains in the computational cell.

Largest

diameter Volume%
Model name # Grains  (nm) crystalline
123¢g 1 1.68 12
211g 1 2 21
317g 1 2.3 32
429¢ 1 2.54 43
123g87¢g 2 1.68 21
163g163g 2 1.84 32
211g211g 2 2 42
59g59¢g 2 1.31 12
163g123g87g59¢ 4 1.84 43
163g59g59g35¢g 4 1.84 32
35¢35g35¢35¢g 4 1.1 12
59g59g59g59¢g 4 1.31 21
crn1000 0 0 0

however, only a weak dependence is shown between thicknesses of 10-22 nm in a-Si. Prior
to stacking, the individual cells are randomly rotated and randomly translated in the x and
y directions, but without creating any void spaces. The use of a random rotation creates a
statistically isotropic material. Selected simulations combine different computational cells in
the same stack, e.g. to investigate the effect of introducing a paracrystallite size distributions
or of diluting the paracrystalline cells with cells of CRN. The designation code for the stacked
model now gives the number of each type of cell after the number g, e.g. 317glcrn6 indicates a
model containing 1 cell of 317g and 6 cells of CRN. To obtain good sampling statistics, 7 (r, K)
is calculated from 200 equivalent stacks, where the component cells are randomly rotated and
shifted in each of the 200 stacks. For 1.1 nm instrument resolution, this gives a total of greater
than 5000 pixels in the simulated dark-field image, resulting in an observed sampling induced
error of less than 1% in the calculated V (k). At the boundaries between computational cells
the atomic positions are random. This is unphysical (tetrahedral short-range order should be
preserved), but the number of atoms in the cell boundaries is a small fraction of the total. To
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check that boundary effects are negligible, we introduced extra boundaries into several test
stacks and found no difference in the simulated V (k) spectra.

We also investigated the possible role of strain on the V (k) data. As described above,
the synthesis of the paracrystalline models allows the atoms within the grains to adjust their
positions in order to minimize the system energy. To construct a strain-free analogue, we first
created several cells in which spheres of perfect crystalline Si are suspended in space; each of
these has the same number and size of grains as in one of the paracrystalline models. We then
stacked one or more of these cells together with cells of CRN to achieve nearly the same number
of atoms per unit area, as projected through the total thickness, as in the corresponding stacked
pc-Si model. Finally we computed the variance for 200 such stacks, introducing random
rotations and displacements as before. This approach assumes that the physical separation of
the crystalline spheres and the CRN does not introduce significant errors because these atoms
are combined in projection; this is borne out by the reasonableness of the results.

We had previously shown that introducing preferred orientation into the paracrystalline
models does influence the heights of the variance peaks [17]. In the absence of experimental
data that indicate anisotropy, we do not consider that possibility in the present work.

Here, we simulate the dark-field hollow cone image for each stack of computational cells
using FEMSIM, which uses an algorithm developed by Keblinski [28]. This code is optimized
for the present purposes, i.e., to calculate the intensity scattered by all the atoms within the
projected resolution volume on each pixel. While this code can handle any resolution, it
is computationally efficient to limit the resolution to two-thirds the width of the model or
less. The program currently considers single scattering only. Multiple scattering effects are
considered insignificant for a-Si films less than 25 nm in thickness [29]; for heavier atoms,
multiple scattering effects would need to be considered, or the thickness should be reduced. The
simulations presented here use a constant resolution of 1.1 nm because: (i) smaller resolutions
give larger variance signatures; (ii) this resolution is readily available on both our TEM and
our STEM; (iii) it is computationally fast; and (iv) our objective to determine what quantitative
information can be easily extracted from a single variance curve, which is the most readily
available experimental information to users of TEMs.

4. Results and discussion

The paracrystalline silicon model simulations afford V (k) signatures that reveal the separate
effects of paracrystallite size versus volume fraction and show that strain effects in the
paracrystalline grains are non-negligible. V (k) is a complex and non-linear function of
paracrystallite size and volume fraction. When the paracrystal size is held fixed and the volume
fraction changed, the relative heights of the 1st through 3rd peaks remain constant but the
absolute magnitude changes (figure 5). When the volume fraction is held constant and the
paracrystallite size changed, the peak magnitudes also change. However, for monodisperse
models these contributions can be deconvoluted: we have determined that the size of the
paracrystalline regions can be extracted, independent of the volume fraction, by taking the ratio
of the 1st to 2nd peaks (at k = 0.31 and 0.53 A, respectively) and separately the ratio of the 2nd
to 3rd peaks (the latter at k = 0.61 A). These peak height ratios vary linearly as a function of
paracrystallite diameter (figure 6). The relationship reported in figure 6 holds true for volume
fractions greater than ~3% (this limit is also a function of paracrystallite size). At this volume
fraction or smaller, the 3rd peak is no longer distinguishable, and the variance resembles that of
a CRN. Once the size of the paracrystallites is known, the magnitude of the 1st peak can be used
to estimate the crystalline volume fraction (figure 7). Recall that the absolute height of V (k)
also varies with the coherence of the imaging mode; thus data taken on different instruments
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Figure 6. Peak height ratios (peak2/peak | and peak 3/peak 2) at 1.1 nm resolution
for monodisperse pc-Si models of various paracrystalline volume fraction as a function of
paracrystallite diameter. Dotted lines are linear least square fits to the data.

should not be compared in the absence of calibration data, i.e. samples that have been analyzed
on both instruments.

Real systems will have a polydisperse size distribution. Our study shows that for
polydisperse systems it is difficult to extract the relative contributions of size versus volume
fraction from the V (k) data. However, figure 6 allows us to set some bounds on the overall
structure of a mixed system. We stack models of varying paracrystallite size and volume
fraction, simulate the variance, and then attempt to interpret the data in terms of paracrystallites
size and volume fraction. Here (open circles, figure 8), the distribution of polydisperse model
is 1/13 of large (2.5 nm) paracrystals and 12/13 of small (1.3 nm) paracrystals. From the
peak height ratio plot, we would (conservatively) estimate a probable size of 1.5-2.2 nm.
In the absence of a large peak magnitude, we would also correctly conclude that there are
relatively few of the large paracrystallites present. To obtain more detailed information on size
distributions, more sophisticated data mining from STEM nanodiffraction patterns and/or more
sophisticated theory will be required.

Strain effects are revealed by comparing the paracrystalline models with the models
consisting of perfect crystalline spheres combined with the CRN matrix. In the perfect
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Figure 8. Variance (k) for paracrystalline model 429g(1 cell) + 59g59¢g(6 cells) in comparison to
models 429g7 and 59g59¢g7.

crystalline model the variance peaks are large at high k whereas they are suppressed in
the paracrystalline model (figure 9). This indicates that strain fields are very significant in
paracrystalline silicon; strain more strongly damps diffraction from closely spaced high-k
planes, reducing their influence on the variance in paracrystalline versus perfectly shaped
crystalline spheres. The muting of the 2nd and 3rd peaks, and the complete absence of
the 4th peak, in this case, are consistent with experimental data. Visual inspection of the
paracrystalline models reveals significant displacements within the grains, including curvature
of atomic planes. Such an effect is not surprising in view of the topological transition between
the crystalline and amorphous matrix. For example, in the CRN the bond angle deviation
is £10°, and since tetrahedral bonding is continuous, we should expect distortions to extend
within the grain. Simulations of the electronic structure reveal that the conduction band tail
states are localized around the periphery of the grains, which is presumably a strain effect [24].

These results show that strain must be considered when extracting size and volume fraction
information from variance peaks. It could be argued that this complication invalidates the
relationships shown in figures 6 and 7. We respond as follows. It is widely found that
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Figure 9. Comparison of simulated V (k) for 59g59¢g (d = 1.3 nm) pc model (open circles) and
1.3 nm crystalline spheres of Si suspended in space in stacks with cells of CRN to achieve equivalent
projected atom density (closed circles).

experimental samples of a-Si have nearly the same bond angle and length deviations as found in
the present computational models; these facts indicate that the experimental synthesis method,
although far from real equilibrium, allows enough relaxation for the sample to develop strain
fields that are reproducible and presumably similar to those in the WWW computational cells.
Thus the trends shown in figures 6 and 7 should be robust. On the other hand, it may be possible
to alter the strain fields by alloying, especially with hydrogen, which inserts into strained Si—
Si bonds and decorate the network with Si—-H bonds [30, 31]. In a previous experimental
study, we introduced atomic hydrogen into an a-Si sample grown at 350 °C, observed that the
second peak increased in magnitude, and interpreted that the paracrystalline regions must have
increased in size [10]. The results in figure 9 offer an alternative explanation: the introduction
of hydrogen may have provided enough relaxation that the strain fields diminished within the
grains, thus increasing the variance. To determine which effect is dominant, it will be necessary
to acquire variable resolution FEM data using a STEM and to determine the extent to which
the correlation length extracted from the analysis is influenced by strain.

The present simulations provide the best agreement to date with experimental FEM results
(figure 10). In accord with previous FEM studies on magnetron sputtered a-Si grown at various
substrate temperatures [9], we find that both the 1st and 2nd peaks increase in intensity as
the regions of order (paracrystallites) grow in size, and that the 2nd peak ultimately becomes
larger than the 1st. The present work shows that the peak height ratios provide a quantitative
measure of the paracrystallite size, independent of the volume fraction. For example, analysis
of the aforementioned experimental spectra using the peak ratios (figure 7) indicates that the
paracrystallite size increases from 2.4 to 3.7 nm the substrate temperature increases from 200
to 350°C.

An apparent discrepancy is that the 3rd peak is rarely resolved from the 2nd peak in real
experiments, whereas it is clearly visible in most of the simulations. We previously observed the
peak splitting in hydrogenated a-Si:H samples when the image area being analyzed contained
1 or 2 very large crystallites (>4 nm) [21]. (The films analyzed in that study were prepared
using high-pressure plasma enhanced CVD, in which Si nano-aggregates nucleate in the gas
phase and land on the film growth surface.) However, when the data from all the sampled areas
were averaged together, the peak splitting could no longer be resolved in V (k). We interpret
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Figure 10. Comparison of V (k) for magnetron sputtered a-Si at a substrate temperature of 210 °C
(nominally the same as from [10]) and paracrystalline model 59g59g4crn3.

that most experimental samples do not contain enough large paracrystallites to produce peak
splitting. In our simulations, the volume fraction of large crystallites (>2 nm) must be >1% to
resolve the peak splitting or >7% for small crystallites (< 1.5 nm), i.e. the lack of peak splitting
serves as an indirect metric of the fraction. In STEM, the peak splitting is more difficult
to find because the total area sampled is ~500 nm? whereas in HCDF, the area sampled is
~100000 nm?. It is also possible that the current models do not capture some structural aspect
of the real material; strain is the most likely suspect, although if the real material were more
highly strained than the WWW models, then it would be less likely to observe a 2nd peak which
is both large in magnitude and also merged (unresolved) with the 3rd peak.

There is also an apparent discrepancy between the continuous increase in variance with
volume fraction of ordered regions deduced in this work and the maximum in variance at a
volume fraction of 2.5% predicted using the analytical formalism of Stratton and Voyles [32].
The latter authors assumed regions of perfect crystalline silicon in their model and a constant
intensity from the CRN, whereas the WWW synthesis routine used in our study allowed strain
to occur in the paracrystalline regions and produced a non-zero variance for the CRN. They
also assumed an unrealistic sample geometry in which the crystal grains occupy a simple cubic
lattice, leading to excessive overlap of the grains in projection. Thus, strain again appears as
an important effect that deserves additional consideration in future research. As pointed out
by Gibson [33] in his contribution to this volume, strain effects are expected to be large in
tetrahedral covalent materials due to the angular nature of bonding, and significantly smaller in
materials that lack directional bonding such as amorphous metals.

5. Conclusions

We have quantified the FEM method for a-Si by forward simulating the FEM data from a family
of paracrystalline silicon models. The resulting models give the best fit to experimental FEM
to date. The FEM signal generated from these models show that V (k) is a complex function
of size and volume fraction of the ordered regions present in the amorphous matrix. However,
the ratio of the variance peaks as a function of k affords the size of the ordered regions, and
the magnitude of the variance affords a semi-quantitative measure of the volume fraction. We
have also shown that variance from experimental films contain strain. Thus, strain must be
considered when extracting size and volume fraction information from variance peaks.

11



J. Phys.: Condens. Matter 19 (2007) 455204 S N Bogle et al

Acknowledgments

We are grateful to the National Science Foundation for support of this work under grants DMR
02-05858 and DMR 06-05890. SNB also acknowledges the International Materials Institute-
New Functionality in Glass Scholarship for travel support to the International Workshop on
Nanoscale Order in Amorphous and Partially Ordered Solids (Cambridge UK, 9-11 July 2007),
for which this paper was written. We thank David A Drabold, Ohio University, for many useful
suggestions.

References

(1]
(21
(31
(4]
(5]
(6]
(71
(8]
(91
[10]
[11]
[12]

[13]
[14]
[15]
[16]
[17]
[18]

[19]
[20]
[21]

[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]
[31]
[32]
[33]

12

Zachariasen W H 1932 J. Am. Chem. Soc. 54 3841

Polk D E 1971 J. Non-Cryst. Solids 5 365

Polk D E and Boudreaux D S 1973 Phys. Rev. Lett. 31 92

Elliott S R 1991 Nature 354 445

Treacy M M J and Gibson J M 1996 Acta Crystallogr. A 52 212-20

Voyles P M 2001 Thesis University of Illinois at Urbana-Champagin

Gibson J M, Treacy M M J and Voyles P M 2000 Ultramicroscopy 83 169-78

Treacy M M J, Gibson J M and Keblinski P J 1998 J. Non-Cryst. Solids 231 99-110

Voyles P M, Gerbi J E, Treacy M M J, Gibson J M and Abelson J R 2001 Phys. Rev. Lett. 86 5514

Nittala L N, Jayaraman S, Sperling B A and Abelson J R 2005 Appl. Phys. Lett. 87 241915

Gibson ] M and Treacy M M J 1997 Phys. Rev. Lett. 78 1074

Kwon M H, Lee B S, Bogle S N, Nittala L N, Abelson J R, Bishop S G, Raoux S, Cheong B K and Kim K B 2007
Appl. Phys. Lett. 90 021923

Stratton W G, Hamann J, Perepezko J H, Voyles P M, Mao X and Khare S V 2005 Appl. Phys. Lett. 86 141910

Stratton W G, Hamann J, Perepezko J H and Voyles P M 2006 Intermetallics 14 1061

Biswas P, Tafen D and Drabold D A 2005 Phys. Rev. B 71 054204

Biswas P, Atta-Fynn R and Drabold D A 2007 J. Phys.: Condens. Matter 19 455202

Khare S V, Nakhmanson S M, Voyles P M, Keblinski P and Abelson J R 2004 Appl. Phys. Lett. 85 745

Voyles P M, Zotov N, Nakhmanson S M, Drabold D A, Gibson J M, Treacy M M J and Keblinski P 2001 J. Appl.
Phys. 90 4437

Voyles P M and Muller D A 2002 Ultramicroscopy 93 147-59

Nittala L N, Bogle S N, Tweston R D, Voyles P M and Abelson J R 2007 unpublished

Nguyen-Tran T, Nittala L N, Bogle S N, Suendo V, Rocca i Cabarrocas P and Abelson J R 2006 J. Appl. Phys.
100 094319

Stratton W G and Voyles P M 2007 J. Phys.: Condens. Matter 19 455203

Drabold D A and Li J 2001 Curr. Opin. Solid State Mater. Sci. 5 509

Nakhmanson S M, Voyles P M, Mousseau N, Barkema G T and Drabold D A 2001 Phys. Rev. B 63 235207

Wooten F, Winer K and Weaire D 1985 Phys. Rev. Lett. 54 1392

Mousseau N and Barkema G T 2000 Phys. Rev. B 61 1898

Chakraborty S and Drabold D A 2007 at press

Dash R K, Voyles P M, Gibson J M, Treacy M M J and Keblinski P 2003 J. Phys.: Condens. Matter 15 S2425

Treacy M M J and Gibson J M 1993 Ultramicroscopy 52 31

Jackson W B and Tsai C C 1992 Phys. Rev. B 45 6564

von Keudell A and Abelson J R 1997 Appl. Phys. Lett. 26 3832

Stratton W G and Voyles P M 2007 Ultramicroscopy submitted

Gibson J M 2007 J. Phys.: Condens. Matter 19 455217


http://dx.doi.org/10.1021/ja01349a006
http://dx.doi.org/10.1016/0022-3093(71)90038-X
http://dx.doi.org/10.1103/PhysRevLett.31.92
http://dx.doi.org/10.1038/354445a0
http://dx.doi.org/10.1107/S0108767395012876
http://dx.doi.org/10.1016/S0304-3991(00)00013-9
http://dx.doi.org/10.1016/S0022-3093(98)00371-8
http://dx.doi.org/10.1103/PhysRevLett.86.5514
http://dx.doi.org/10.1063/1.2143124
http://dx.doi.org/10.1103/PhysRevLett.78.1074
http://dx.doi.org/10.1063/1.2430067
http://dx.doi.org/10.1063/1.1897830
http://dx.doi.org/10.1016/j.intermet.2006.01.025
http://dx.doi.org/10.1103/PhysRevB.71.054204
http://dx.doi.org/10.1088/0953-8984/19/45/455202
http://dx.doi.org/10.1063/1.1776614
http://dx.doi.org/10.1063/1.1407319
http://dx.doi.org/10.1016/S0304-3991(02)00155-9
http://dx.doi.org/10.1063/1.2360381
http://dx.doi.org/10.1088/0953-8984/19/45/455203
http://dx.doi.org/10.1016/S1359-0286(02)00004-9
http://dx.doi.org/10.1103/PhysRevB.63.235207
http://dx.doi.org/10.1103/PhysRevLett.54.1392
http://dx.doi.org/10.1103/PhysRevB.61.1898
http://dx.doi.org/10.1088/0953-8984/15/31/317
http://dx.doi.org/10.1016/0304-3991(93)90020-X
http://dx.doi.org/10.1103/PhysRevB.45.6564
http://dx.doi.org/10.1063/1.120544
http://dx.doi.org/10.1088/0953-8984/19/45/455217

	1. Introduction
	2. Implementation on the TEM
	3. Model development
	4. Results and discussion
	5. Conclusions
	Acknowledgments
	References

